img

BLOG


Differential Pressure Transmitters: How Do They Help in Flow Measurements?

Brian Craig

July 17, 2017

Flow measurement is basically the process of determining the fluid flow in a plant or an industry. This measurement can be done with the help of various devices, such as positive displacement meters, differential pressure transmitters, Coriolis, magnetic meters, etc. However, differential pressure transmitters are being used on a large scale for flow measurement in various industries. These flowmeters can either be used as gas flowmeters or liquid flowmeters. Different types of differential pressure transmitters are used for based on the application requirements. In this post, we will shed some light upon the working of differential pressure flowmeters and their types.

How Do Differential Pressure Transmitters Measure the Fluid Flow?

The working of differential pressure (DP) flowmeters is based on the Bernoulli’s principle. Here is the working principle of a differential pressure flow transmitter explained in a few, easy-to-understand steps:

  • Step 1: A compression is created in the pipe by the differential pressure flowmeter.
  • Step 2: A pressure drop is created in the flowmeter because of this constriction.
  • Step 3: This pressure drop increases with the increase in the fluid flow.
  • Step 4: The upstream and downstream pressures are routed to the differential pressure transmitter by impulse piping.
  • Step 5: This differential pressure is then measured by the transmitter and fluid flow is determined.

 
What are the Types of Differential Pressure Flowmeters?

Based on the measurement, different types of differential pressure flowmeters are used. Here are a few types of DP flowmeters.

calibrated using dead weight testers

  1. Orifice Flowmeters: The orifice flowmeters consist of a flat metal plate, with an opening. This flat plate is installed in a circular pipe, and is perpendicular to the flowing fluid. When the fluid passes through the opening (orifice), a restriction is caused, which decreases the pressure and increases the velocity of the flow. The pressure between the pipe flow stream and the orifice is measured by a differential pressure transmitter.

  2. Pitot – Static Tube Flowmeters: These flowmeters consist of annular tube, pitot tube, and static pressure ports. The pitot tube converts the kinetic energy of the fluid flow into potential energy to determine the local velocity at a point in the flow stream.

  3. V-Cone Flowmeters: As the name suggests, these flowmeters consist of a V-shaped cone element. It is placed in the center of the pipe to create an annular space for passing the fluid. This conditions the fluid flow and creates a differential pressure. It enables easier and less noisy measurement of the differential pressure as compared to that done by orifice technology. The pressure before the cone and after the cone is measured with the help of a differential pressure transmitter.

There are other types of flowmeters too, such as elbow, wedge, spring-loaded variable aperture, nozzle, venturi, and laminar flowmeters. Hope the post helped you in understanding how the differential pressure transmitters work. Also, the information about the different types of differential pressure flowmeters will help you select the right one for your flow measurements. If you are confused in selecting the right type of transmitter for your application, you can seek advice from an expert. The Transmitter Shop is one such expert, which provides wide varieties of reliable differential pressure transmitters, such as Foxboro transmitters, and Rosemount transmitters.



Related Posts
Exploring Density and Viscosity Measurement in Industrial Processes
Pressure Monitoring in Pump Systems: A Comprehensive Guide
Common Challenges in Air Flow Measurement and How to Overcome Them
Monitoring and Controlling Energy Production in Power Plants
Understanding the Impact of Pressure Fluctuations on Drying Performance
Understanding Pressure Ranges and Units for Fluid System Monitoring
The Benefits and Challenges of HVAC System Balancing
An Ultimate Selection Guide for Flow Transmitters
Procedure to Calculate Accuracy of Pressure Transmitter Discussed
Pressure Transmitters vs. Pressure Transducers: Learn the Differential Characteristics
Multivariable Transmitter: What Is It and How Does It Work?
How Do You Test for 4 to 20mA Signal in a Pressure Transmitter?
Temperature Transmitter: How to Select The Efficient One for Your Application?
Flow Meter vs Flow Transmitter: Know the Difference
Absolute and Gauge Pressure Transmitters - Overview and Working Principle
HART Communication Protocol: Overview, Working Principle, Benefits in Industrial Automation
What is Absolute Pressure Transmitter & how does it work?
How Do You Calibrate A Flow Transmitter?
Remote Seals: Significance, Working Principle & Applications
How to Select Pressure Transmitter for Your Application?
How to Choose Diaphragm Seals for Your Application?
Difference in Conventional Transmitters and Smart Transmitters
What Are Diaphragm Seals and Their Types?
Rosemount 2088 Vs Rosemount 3051 – A Few Points of Differences Discussed
Rosemount 3051S vs 3051C Transmitter – What is Your Choice?
Impact of Shock and Vibration on Pressure Transducer
Safety Tips for Differential Pressure Transmitter Operation
Factors to Consider When Choosing a Pressure Transmitter Manifold
Tips to Improve the Performance of Pressure Sensors
Important Calibration Tips for Pressure Sensors
5 Most Popular Pressure Transmitter Technologies
Factors of Consideration When Choosing Pressure Transmitters
Tips to Augment the Performance and Service Life of Pressure Transmitter
Factors To Be Considered While Differentiating $40 and $400 Pressure Transmitters
An Unconventional Guide to Selecting the Right Pressure Sensor
3 Major Pressure Transmitter Technologies That Made the Device Popular
The Features and Benefits of Rosemount 1199 Direct Mount Transmitters
What are the Steps Involved in Calibrating Pressure Gauge?
All Important Questions on Reconditioned Transmitters Answered
Is Remanufactured Transmitter a Better Option than a New One?
3 Whats that Explain How Often You Should Calibrate Pressure Transducer
Guidelines for Troubleshooting Pressure Transducers
Learn How to Calibrate a Pressure Transmitter – II
Learn How to Calibrate a Pressure Transmitter
Know Three Interesting Uses of Pressure Transmitters

Recent Blogs


Most Viewed Blogs